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Abstract We consider directed path models of a selection of polymer and vesicle
problems. Each model is used to illustrate an important method of solving lattice path
enumeration problems. In particular, the Temperley method is used for the polymer
collapse problem. The ZL method is used to solve the semi-continuous vesicle model.
The Constant Term method is used to solve a set of partial difference equations for
the polymer adsorption problem. The Kernel method is used to solve the functional
equation that arises in the polymer force problem. Finally, the Transfer Matrix method
is used to solve a problem in colloid dispersions. All these methods are combinatorially
similar as they all construct equations by considering the action of adding an additional
column to the set of objects.

Keywords Interacting self-avoiding walks · Directed paths · Polymer adsorption ·
Polymer collapse · Vesicles · Exact solution · Combinatorics

1 Introduction

Over the years many models have been use to study polymer phase transitions, some
more realistic than others. In this paper we consider the class of models which use
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directed lattice paths. Although these models are clearly not quantitative models of
their respective systems they do capture the qualitative nature of the phase transitions.
They also have the big advantage of frequently being exactly solvable. Thus we obtain
the certainty provided by the mathematical solution that is lacking in approximate
solutions. These models have also had an unexpected bonus: they have provided a
large amount of new pure combinatorics. The method of (kernel) functional equations
is a very good example [1–7] as is the connection between the Bethe Ansatz [8,9]
and Gessel-Viennot involution [10,11]. All the methods discussed in this paper are
combinatorially similar as they all construct equations by considering the action of
adding an additional step (or steps) to the set of objects.

We consider two classes of path: discrete lattice paths and semi-continuous paths. A
discrete lattice path of length n is a sequence of n+ 1 vertices π = v0v1 . . . vn where
vi ∈ Z

2 such that consecutive pairs of vertices, si = vivi+1 satisfy the condition that
vi+1 − vi ∈ S, where S is some set of allowed pairs (a, b) ∈ Z

2, called the step set.
Usually v0 is set to the origin (0, 0).

The paths may also be weighted. A real valued weight can be associated with pairs
of vertices wi, j : viv j → R. The weight, W (π), of a path π is the product of the
weights,

W (π) =
∏

0≤i< j≤n

wi, j . (1)

This gives rise to a weight polynomial,

Zn =
∑

π∈Pn

W (π), (2)

where Pn is the set of all paths of length n taken from some class of paths. The
weight polynomial turns out to be the partition function for several models. The length
generating function for the weight polynomials is defined as

G(x) =
∑

n≥0

Zn xn (3)

The generating function has the advantage that it is frequently easier to compute than
the weight polynomial. It also has the property that the thermodynamic limiting free
energy,

F = − lim
n→∞

1

n
log Zn (4)

(we use units such that kB T = 1) is related to the closest singularity of G(x) on the
positive real axis xc, that is,

F = log xc. (5)
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2 Interacting partially directed paths by the Temperley method

We can model the polymer collapse transition with interacting partially directed paths.
Partially directed paths are discrete lattice paths with step setS={(0, 1), (0,−1), (1, 0)}
with the constraint that the following two successive pairs of steps, si = (0, 1),
si+1 = (0,−1) and si = (0,−1), si+1 = (0, 1), are forbidden (this ensures self-
avoidance). The step (0, 1) is called a north step, (0,−1) is a south step and (1, 0) is
an east step. The interaction is modelled with a nearest-neighbour weight, wi, j , given
by

wi, j =
{

τ, if v j − vi = (1, 0) and j �= i + 1
1. otherwise

(6)

The pair of vertices having a nearest-neighbour weight τ is called a (nearest-neighbour)
contact. An example of an interacting partially directed walk is illustrated in Fig. 1. If
each contact corresponds to some force between the monomers of the polymer, then
the weight τ becomes the Boltzmann factor associated with the contact and the weight
polynomial,

Zn =
∑

π∈Pn

W (π) (7)

is the partition function for this model, where Pn is the set of length n partially directed
paths.

We now have the problem of computing Zn , or more easily, its generating function
G(x). This combinatorial problem was solved in [12] using the Temperley method
[13].

The method begins with the generating function, gr , for walks whose first step is
an east step followed by exactly r ≥ 0 steps in either the north or south direction,

gr (x) =
∑

n≥0

Zn(r)xn (8)

Fig. 1 An example of
interacting partially directed
walk with 24 steps and nine
contacts
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then

G(x) =
∑

r≥0

gr (x). (9)

We can now write down recurrence relations for gr as follows. Consider first paths
whose last vertical step is length zero (i.e. those generated by g0), these arise from
either a single east step path, or, by appending an east step to g0 paths, or to g1 paths
etc. Thus we get the equation,

g0 = x + x(g0 + g1 + g2 + · · · ) = x + xG(x). (10)

Similarly, paths in the set generated by gr , for r > 0, arise by appending an east step
followed by either r north steps or r south steps on to paths in the sets gk , for k ≥ 0.

In order to account for the contacts we need to consider two cases. First, if the
last sequence of vertical steps in gk are in the opposite direction to those in gr (in
which case we get a weight τmin{k,r}), or second, if they are in the same direction, in
which case there is no contribution to the contact weight. Thus, for r ≥ 1, we get the
equations

gr = xr+1

(
2+

r∑

k=0

(1+ τ k)gk + (1+ τ r )
∑

k>r

gk

)
. (11)

By adding and subtracting appropriate multiples of gr−1 and gr+1 the following
recurrence is obtained for r ≥ 1,

gr+1 − x
(
(1+ τ)− x(1− τ)(τ x)r ) gr + τ x2 gr−1 = 0. (12)

Because of the (τ x)r term this is not a simple constant coefficient recurrence relation.
To solve this equation let,

q = τ x (13)

and try the Ansatz,

gr = µr
∑

m≥0

pm(q) qmr , p0(q) = 1. (14)

Substituting leads to the characteristic equation

µ2 − (x + q)µ+ xq = 0 (15)

and the first order recurrence relation

pm(q) = µ(−q)qm

(µqm−)(µqm − q)
pm−1(q). (16)
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The general solution of (12) is the linear combination

gr = A1g(1)
r + A2g(2)

r , r ≥ 1, (17)

corresponding to the two solutions µ1 = x and µ2 = q of (15) and where

g(i)
r = µr

i + µr
i

∑

m≥1

µm
i xm(x − q)m

∏m
k=1(µi qk − x)(µi qk − q)

qm(m+1)/2+mr . (18)

The limiting behaviour of gr as r → ∞ requires A2 = 0. To determine A1, note
g0 = A1g(1)

0 /2 = x + xG(x) and similarly g1 = A1g(1)
1 = p1 + p2G(x) where

p1 = 2+ x − q (19)

p2 = 1+ τ + x − q (20)

which gives a pair of equations for A1. Solving then gives,

G(x) = − p1 H(x)− 2

p2 H(x)− 2
(21)

H(x) = x
g(1)

0

g(1)
1

(22)

g(1)
k = xk + xk Jk

(
τ x3(1− τ)

)
(23)

where Jr (t; q) is a q-Bessel function,

Jk(t; q) =
∑

n≥0

tnqn(n+3)/2
∏n

k=1(1− qk)(1− xqk−1)
qkn, (24)

It is interesting to note that H(x) can be represented as a continued fraction via

τH(t) = 1+ τ +
(

1

τ
− 1

)
q2t − 1

H(qt)
(25)

where H(τ, x) = H(1).

3 Staircase vesicles by the ZL method

In this section we describe how to derive the exact solution [14] for the generating
function of the semi-continuous analogue of staircase polygons (vesicles) using the
method developed by Zwanzig and Lauritzen [15]. Its use was revived in [16] to
consider the collapse phase transition of interacting partially directed walks. It is a
continuous analogue of the Temperley method [17].
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Fig. 2 A semi-continuous
staircase polygon of n = 4
columns with upper horizontal
steps at heights h+1 , h+2 , h+3 , h+4
and lower horizontal steps at
heights 0, h−2 , h−3 , h−4 . The
overlap between columns 3 and
4 is shown as t3 = h+3 − h−4
while the height of the
right-most column is given as
r4 = h+4 − h−4 . The upper path
is shown in black while the
lower path is shown in grey

The model can be defined as follows. Consider a plane, {(u, h) : (u, h) ∈ Z× R}.
Now consider a set of upper ‘horizontal steps’ at heights h+j , j = 1, . . . , n, defined

by the pairs of points (( j − 1), h+j ), ( j, h+j ), and a set of lower

horizontal steps at heights h−j , j = 1, . . . , n, defined by the pairs of points (( j −
1), h−j ), ( j, h−j ). We first impose the constraint h+j > h−j for j = 1, . . . , n and let

h−1 = 0 so that the first lower horizontal step is fixed. We also impose the staircase
constraints, h−j ≥ h−j−1 and h+j ≥ h+j−1 for j = 2, . . . , n. An upper path defined by

(0, 0), (0, h+1 ), (1, h+1 ), (1, h+2 ), (2, h+2 ) . . . (n− 1, h+n−1), (n− 1, h+n ), (n, h+n ) and a
lower path defined by (0, 0), (1, 0), (1, h−2 ), (2, h−2 ), . . . , (n−1, h−n ), (n, h−n ), (n, h+n )

begin and end at the same points, and so not otherwise intersect, thereby forming a
polygon: a staircase polygon (Fig. 2).

We associate a length generating variable x with horizontal steps of the paths, a
length generating variable y = e−τ with the vertical steps of the two paths and an area
generating variable z = e−ε with unit areas of the enclosed polygon (the area is also
a continuous variable). Let

r j = h+j − h−j (26)

be the height of each column of the polygon. Hence a polygon ϕn of n columns has
weight

w(ϕn) = x2n y

[
r1+∏n

j=2(h
+
j −h+j−1)+(h−j −h−j−1)+rn

]

z
∏n

j=1 r j . (27)
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One further definition that will prove useful below is the overlap

t j = h+j − h−( j+1) (28)

between successive columns j and j + 1 with j = 1, . . . , (n − 1).
The generating function of this polygon model of a vesicle is the integral over all

configurations summed over all numbers of columns:

GT (x, τ, ε) =
∞∑

n=1

∫
dϕn w(ϕn), (29)

where the single integral sign here represents multiple integrals over column heights
for each polygon ϕn .

Consider polygons where the height of their right-most column is r = h+n − h−n .
The generating function can be written as a genuine single integral over all polygons
that have the height of their right-most column as r :

GT (x, τ, ε) =
∫ ∞

0
T (r) dr. (30)

The major ingredient in the method of Zwanzig and Lauritzen is to find a integral
equation for T (r), which is the analogue of the recurrence relation of the Temperley
method, by considering how configurations with their right-most column of height r
can be constructed from configurations of one fewer columns and right-most column
of height s. The method is then to solve this integral equation by turning it into
a differential equation, and so solving for the generating function. Note that T (r)

depends on τ , ε and x . The resulting differential equation is one in the variable r
rather than in one of the model parameters.

If a polygon is only a single column of height r then its total weight is

x2zr y2r (31)

Now consider polygons of more than one column with right-most column of height r
and how such a polygon can be constructed from polygons with one few columns and
right-most column of height s. Clearly the contribution to the generating function can
be written as

x2zr
∫ ∞

0
ds T (s) f (r, s), (32)

where f (r, s) is the integral over the ways in which a column of height r can be added
to a staircase polygon with right-most column of height s and obey the definition of
a staircase polygon. Let t be the overlap of the two columns of height r and s (see
Fig. 3). Now, the minimum value that the overlap can attain is 0 while its maximum
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Fig. 3 A staircase polygon with
a right-most column of height r ,
whose perimeter is shown in
grey, and second-right-most
column of height s. The
perimeter of the rest of the
polygon except the right-most
column is shown in black. The
weight of the configuration
depends on the overlap t

value is min(r, s). Then the function f (r, s) can be written as an integral over the
values of the overlap t ,

f (r, s) =
∫ min(r,s)

0
dt y2(r−t), (33)

since by adding a column of height r to one of height s one nominally gains vertical
perimeter 2r but loses the overlap from both the new column and the one to which it
attaches: that is, one loses vertical perimeter 2t . By combining the above arguments
and evaluating the integral for f (r, s) we find the functional equation for the generating
function T (r) as

T (r) = x2zr y2r + x2zr
∫ ∞

0
ds T (s) f (r, s), (34)

where

f (r, s) = (2τ)−1 exp(−2τr)
[
exp(τ (r + s)− τ |r − s|)− 1

]
. (35)

To solve the integral equation it is more convenient to work with the function g(r)

defined as

g(r) = eεr eτr T (r). (36)

123



J Math Chem (2009) 45:39–57 47

By differentiating the above integral equation we obtain the differential equation

d2g

dr2 = (τ 2 − x2e−εr )g(r). (37)

Making the substitutions z = ae−εr/2 and h(z) = g(r) we obtain

z2 d2h

dz2 + z
dh

dz
+
(

4x2

ε2a2 z2 − 4τ 2

ε2

)
h(z) = 0. (38)

This is Bessel’s differential equation with

ν = 2τ

ε
(39)

and

a = 2x

ε
. (40)

The solution is given by

h(z) = C1 Jν(z)+ C2 J−ν(z) (41)

with C j being constants that depend on the boundary conditions implicit in the integral
equation. One can show (analogously to [18]) that C2 = 0 and hence we can solve the
boundary condition

g(0) = x2 (42)

to obtain

g(r) = x2
J 2τ

ε
( 2x

ε
e−εr/2)

J 2τ
ε
( 2x

ε
)

. (43)

The boundary condition for g′(r) can be written as

GT = x−2g′(0)+ τ (44)

and leads to

GT (x, τ, ε) = τ

(
1− σ

J ′ν(σν)

Jν(σν)

)
(45)

with

σ = x

τ
and ν = 2τ

ε
. (46)
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For the sake of completeness we give the solution with z = 1:

GT (x, τ, 0) = τ − (τ 2 − x2)1/2. (47)

The asymptotic behaviour of the model [14] can be derived from the generating
function (45). Note that if the Temperley method is used to solve the discrete ver-
sion [19], q-Bessel functions are obtained rather than Bessel functions.

So we have seen that a polygon model with continuous vertical lengths and with
an area parameter can be solved by a method that is analogous to the Temperley
method. Whereas we needed to solve a difference equation in the discrete case a
integral/differential equation needs to be solved in the semi-continuous case. However,
otherwise the method of solution follows the similar steps.

4 Adsorption of Dyck paths by partial difference equations

Polymer adsorption occurs when a polymer interacts with a surface. The system can
undergo a phase transition from a phase where the polymer is desorbed from the
surface to a phase where it is adsorbed. If the monomers have a attractive contact
potential with the surface it will give rise to a Boltzmann factor, κ , associated with
each monomer at the surface.

We can model this problem with weighted Dyck paths. However, to construct
the partial difference equations we need ballot paths. Ballot paths of height h ≥ 0
are discrete lattice paths v0v1 . . . vn , with v0 = (0, 0), vn = (n, h), step set S =
{(1, 1), (1,−1)} and the constraint that the y coordinate of any vertex, v = (x, y),
must be non-negative. Thus the paths are always on or above the “surface” y = 0.
Dyck paths are ballot paths of height zero. An example of each type of path is shown
in Fig. 4.

To model adsorption we associate a weight κ with each step from y = 1 to y = 0.
The weight polynomial, or partition function,

Zn(h) =
∑

π∈Dn

W (π) (48)

is a sum over all Dyck paths of length n, Dn .
The method of solution we will consider for this model starts with the partial diffe-

rence equations satisfied by the adsorption weight polynomial. The partial difference
equations can then be solved by a constant term expression.

Fig. 4 An example of a Dyck path (left) with weight κ2 and a ballot path (right) of height h = 2
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The weight polynomial Zn(h) for ballot paths ending at height h ≥ 0 satisfy the
following system of partial difference equations

Zn(h) = Zn−1(h − 1)+ Zn−1(h + 1) h > 0 (49a)

Zn(0) = κ Zn−1(1) h = 0 (49b)

Z0(h) = δ0,h h ≥ 0 (49c)

These equations are obtained by consider how the weight polynomial changes when
the length of the paths is increased by adding one additional step. Thus Zn is expressed
in terms of Zn−1. Equation 49a is the “bulk” equation and is obtained by adding a
down step to paths of height h + 1 or by adding an up step to paths of height h − 1.
Equation 49b is the “boundary” equation obtained by adding a down step to paths
of height one (and adding in the associated weight κ). Finally, Eq. 49c is the initial
condition which ensures paths start at height zero.

We follow the method of solution given in [20]. A method using residues may be
found in the earlier paper [21]. The bulk equation is satisfied by Zn=λnρh so long as

λ = ρ + 1

ρ
. (50)

The boundary equation is satisfied by Zn(h) = λn
(
ρh − S(ρ)ρ−h

)
where

S(ρ) = λ− κρ

λ− κ/ρ
, (51)

which is found by taking the linear combination Aρh + Bρ−h , substituting into the
boundary equation, and then solving for the ratio B/A. Finally, the initial condition is
satisfied if

Zn(h) = 1

2
CTρ

[
λn (1− S(1/ρ))

(
ρh − S(ρ)ρ−h

)]
. (52)

Note, using induction the constant term expression is readily proved to satisfy all
Eqs. 49a–49c. The constant term operator, CTρ acts on iterated Laurent power series
in the field Z〈〈ρ, κ〉〉 (see [22] for a more detailed explanation of iterated power series).
Let f (ρ, κ) ∈ Z〈〈ρ, κ〉〉 then f (ρ, κ) is of the form

f (ρ, κ) =
∑

n≥n0

an(ρ)κn, n0 ∈ Z, (53)

with

an(ρ) =
∑

m≥m0

an,mρm, m0, an,m ∈ Z. (54)
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Then CTρ is defined as

CTρ[ f ] =
∑

n≥n0

an,0 κn (55)

Note, the rational function of ρ and κ in (52) must be expanded in κ first, then the
coefficients of κ expanded in ρ. Expanding in the opposite order produces a constant
term expression that does not satisfy the initial condition. In other words, the initial
condition dictates the order of expansion and hence in which iterated field of Laurent
power series the constant term is evaluated.

5 Adsorbing Dyck paths with a force by the kernel-functional method

The action of a vertical force pulling one end of a polymer adsorbing on to a surface
can be modelled using ballot paths (see Sect. 4 for a definition). Of interest here is the
effect the vertical force has on the adsorption phase diagram.

The interaction between the surface and the polymer is modelled in the same way
as the adsorption problem discussed in Sect. 4, that is, associating a weight κ to a
step returning to the surface. The vertical force is modelled by a Boltzmann factor sh

where h is the height of the end of the path. An example is shown in Fig. 5.
Thus we need to compute the generating function

f (s) =
∑

n≥0

xn
∑

h≥0

Zn(h)sh (56)

where Zn(h) is given by (48). The force exerted by a finite length polymer is

Fn(h) = − log Zn(h + 1)+ log Zn(h) = log

(
Zn(h)

Zn(h + 1)

)
(57)

The thermodynamic behaviour is then obtained by taking the limit limn→∞ Fn(h)/n.
We shall construct a recursive functional equation for f (s) by considering the

process of adding a extra step to the end of the paths as illustrated in Fig. 6. The
functional equation can then be solved by using the kernel method [23,24].

Fig. 5 An example of a ballot
path with a surface interaction
and a vertical force
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Fig. 6 The functional equation is constructed by considering the action of adding an extra step above the
surface (left) and on the surface (right)

Consider paths ending at height h and partition the set of all weighted paths, P
according to the height of the last step, thus P = ⋃h≥0 Ph . Paths in Ph can be
constructed from paths one step shorter in several ways.

Case h = 0, n = 0. This is the special case of a zero length path which cannot be
constructed by adding a step to any other path.

Case h = 0. The set of paths length n > 0 ending at height h = 0, P0 can be
constructed from the set of paths ending at height h = 1 by adding a down step which
contributes a weight κx/s.

Case h > 0. The set of all length n > 0 paths ending at some particular height h > 0,
can be constructed from the set of all paths ending at height h+1, Ph+1 by appending
a down step and from the set of all paths ending at height h − 1, Ph−1 by appending
an up step. The down step contributes a weight x/s and the up step xs.

Thus we have the weight preserving bijections.

Ph ←→ xs Ph−1 ∪ x

s
Ph+1, h > 0 (58)

P0 ←→ {1} ∪ κ
x

s
P1, h = 0 (59)

and hence

P = {1} ∪ κ
x

s
P0 ∪

(
⋃

h>0

xsPh−1 ∪ x

s
Ph+1

)
(60)

= {1} ∪ xsP0 ∪
(
κ

x

s
+ xs
)

P1 ∪h≥2

(
xs + x

s

)
Ph . (61)

Since {Ph}h≥0 is a partition, the generating function (56), which we shall write in the
form,

f (s) =
∑

h≥0

fhsh, (62)

satisfies

f (s) = 1+ sx f0 + x(κ/s + s) f1s +
∑

h≥2

x(1/s + s) fksk . (63)
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Since f0 = f (0) and also f0 = 1+ κx f1, Eq. 63 can be written

f (s) = 1

κ
+
(

κ − 1

κ
− x

s

)
f (0)+ x

(
s + 1

s

)
f (s) (64)

To solve (64) for f (s) we first need find f (0). We can’t multiply (64) by s and then
put s = 0 as both sides of the equation vanish. We thus proceed as follows. Write (64)
in the form

K (s) f (s) = 1

κ
+
(

κ − 1

κ
− x

s

)
f (0), K (s) = 1− x

(
s + 1

s

)
, (65)

where K (s) is the kernel. The equation K (s) = 0 has two solutions,

s± = 1

2x

(
1±
√

1− 4x2
)

. (66)

Note, s+ = O(z−1) and s− = O(z) as z → 0. We now consider the limit s → s± in
Eq. 65. As we shall see, f (s) is a quadratic algebraic function. The branch, f−(s) has
a simple pole at s− and hence diverges as s → s− whilst the other branch, f+(s) has
a pole at s+. Thus, we assume

lim
s→s−

K (s) f+(s) = 0 and lim
s→s+

K (s) f−(s) = 0 (67)

which gives two equations

0 = 1

κ
+
(

κ − 1

κ
− x

s−

)
f+(0) (68)

0 = 1

κ
+
(

κ − 1

κ
− x

s+

)
f−(0) (69)

and hence, substituting into (64) gives the two solutions

f±(s) = s±
((κ − 1)− κxs±)

1

(s − s±)
. (70)

Thus we see that f±(s) diverges as s → s± which is consistent with (67).
The generating function f (s) we require for the partition function (56), is a Taylor

series in s and x and hence an element of the ring Z((κ, s, x)). It is readily checked that
of the two solutions f±(s), only the solution f+(s) is an element of Z((κ, s, x)). The
other solution, f−(s) is a Laurent series, that is, has negative powers of x and s and
is an element of the ring Z[[κ, x, s]]. Thus the partition function generating function
(56) is given by

f (s) = s+
(κ − 1− κxs+) (s − s+)

= 1

(κx − (κ − 1)s−) (1− s−s)
, (71)
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From (71) we can readily extract the fixed height h length generating function,

Gn(x) =
∑

n≥0

Zn(κ)xn = sh+1−
κx − (κ − 1)s−

(72)

where we used s+s− = 1.

6 Dyck paths in a strip by the Transfer Matrix method

The force induced between colloid particles by a dilute solution of polymers gives
rise to the phenomena of steric stabilisation and sensitised flocculation of colloidal
dispersions [25]. We can model the phase transitions associated with this problem by
Dyck paths in a strip.

In Sect. 4 we defined Dyck paths. Dyck paths in a strip are Dyck paths which have
the additional constraint that they cannot step above height y = L . We can use them to
model polymers in a strip by adding an interaction energy for each step on to the lower
surface (y = 0) and an interaction energy for each vertex on the upper surface y = L .
This gives rise to two weights. A weight κ—the same as the adsorption problem—and
a weight ω with steps from vi = (i, L−1) to vi+1 = (i+1, L). An example is shown
in Fig. 7. Note, although the physics naturally associates the Boltzmann factor with
the vertex, it is mathematically more convenient to associate the weight with the step
immediately preceding the vertex on the upper (or lower) surface.

We will solve this problem using the Transfer Matrix method. Let T be the transfer
matrix. If the path has a weight or step from y = i to y = j then the matrix element
Ti, j is set to that weight (or one if it is an un-weighted step). The partition function
for n step weighted Dyck paths in the strip can then be written in the form,

Zn(κ, ω) = (T n)
0,0 , (73)

where the transfer matrix has elements

Ti, j =

⎧
⎪⎪⎨

⎪⎪⎩

κ if i = 1, j = 0
ω if i = L − 1, j = L
1 if j = i + 1, i �∈ {0, L − 1}
0 otherwise.

(74)

Fig. 7 A example of a Dyck
path in a strip of width L = 2
showing the lower surface
weights, κ , and the upper surface
weights ω
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This gives rise to a tri-diagonal or Jacobi matrix. As an example, the matrix for paths
in a strip of width L = 3 is the 4× 4 matrix,

T =

⎛

⎜⎜⎝

0 1 0 0
κ 0 1 0
0 1 0 ω

0 0 1 0

⎞

⎟⎟⎠ . (75)

The mathematical problem now becomes that of finding the form of the matrix elements
of the nth power of the transfer matrix. We do this by diagonalising the matrix and
hence need the left and right eigenvectors, e�

k and er
k . The partition function can then

be written,

Zn(κ, ω) =
∑

k

er
k λn

k e�
k, (76)

where the sum is over all eigenvalues λk . The left eigenvectors satisfy the equations

κe�
1 = λe�

0 i = 0
e�

i−1 + e�
i+1 = λe�

i 0 < i < L
ωe�

L−1 = λe�
L i = L ,

(77a)

and for the right eigenvectors

er
1 = λer

0 i = 0
κer

0 + er
2 = λer

1 i = 1
er

i−1 + er
i+1 = λer

i 0 < i < L
er

L−2 + ωer
L = λer

L−1 i = L − 1
er

L−1 = λer
L i = L .

(78a)

The left and right eigenvectors are closely related. In fact, Eqs. (77) are the same as
(78) if we let

κer
0 = e�

0 and ωer
L = e�

L . (79)

Thus we only need to solve the simpler set (77). Equations (77a) and (77a) are of the
form

P−1 = 0 (80a)

P0 = 1 (80b)

Pk+1 = λPk − µk Pk−1, k ≥ 0 (80c)

PL+1 = 0, (80d)
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with Pk := e�
k , k > 0 and

µk =
{

1, if 0 ≤ k ≤ L − 1
ω, if k = L .

(81)

Thus we see that the components of the eigenvectors satisfy a three term recurrence
and hence are orthogonal polynomials in λ. The first equation (77a) does not satisfy
(80c) with the standard initial conditions (80a) and (80b) and thus must be solved
separately.

Equations (80) are readily solved in a few simpler cases: κ = ω = 1 and κω =
κ +ω. The full (κ, ω) case is somewhat more difficult [20,26] and we shall only give
the final result.

Case: κ = ω = 1. This case is usually solved by the method of inclusion exclusion
and not via eigenvectors. However, to solve the general (κ, ω) case it is still necessary
to solve this simpler case. Thus, if κ = ω = 1, then (77) are solved by Chebychev
polynomials (of the second kind). In particular, Pk = ρk − ρ−k with λ = ρ + 1/ρ

and thus

e�
k = er

k = ρk − ρ−k, and ρ2L+2 = 1, κ = ω = 1. (82)

The eigenvalues are given by the roots of unity, ρ2L+2 = 1.

Case: κω = κ + ω. For this more interesting case we can solve (77a) with e�
k =

ρk − ρ−k with λ = ρ + 1/ρ. To solve (78a) we try e�
k = Aρk + Bρ−k and one finds

that B/A = −(λ − κρ)/(λ − κ/ρ). However, this form of the solution, whilst still
satisfying (77a), only satisfies (77a) if κω = κ + ω. Thus we get

e�
k = ρk − S(ρ)ρ−k, S(ρ) = ρ + 1/ρ − κρ

ρ + 1/ρ − κ/ρ
, κω = κ + ω. (83)

The eigenvalues are now given by the roots of e�
L+1(ρ) = 0.

Case: κ , ω arbitrary. We see from (80d) that the zeros of the L + 1th polynomial
are the eigenvalues and hence in order to evaluate the partition function in the form
(76) we need to sum over the zeros of PL+1(λk) = 0. Each term in the sum requires
us to evaluate Pm(λk) at that zero i.e. evaluate one orthogonal polynomial at a zero
of another. Surprisingly for orthogonal polynomials this can be done. It turns out [20]
that the sum (76) can be written as a constant term. One way of seeing this is to write
the sum over zeros as a contour integral. The zeros translate into poles and the residue
expansion is the partition function sum. The integral is then evaluated (after a suitable
change of variable) in terms of the residue at infinity—it is this residue at infinity that
can be written as a constant term.
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Thus, to use get the constant term expression we must change variables to λ =
ρ + 1/ρ. The sum can then be written as a constant term [26], in particular

Z2n(κ, ω) = CTρ

[(
ρ + 1

ρ

)2n 1− ρ2

ρ2 −∑L
s=0 βsρ−2s

L∑

r=0

αrρ
−2r

]
(84)

where

αr =
{

2− ω r ∈ {1, . . . , L − 1},
1 r ∈ {0, L}, (85)

βs =
⎧
⎨

⎩

2κ + 2ω − κω − 4 s ∈ {1, . . . , L − 2},
κ + ω − 3 s ∈ {0, L − 1} ,
−1 s = L .

(86)

and hence

Z2n(0, 0) =
L∑

r=0

n∑

s=0

∑′

s0,...,sL

C2n,n∗
(

s

s0, . . . , sL

)
αr

L∏

m=0

βsm
m (87)

where the multinomial sum has the constraint s0+· · ·+ sL = s, si ∈ {0, . . . , s}, Cn,m

is the generalised Catalan number,

Cn,m =
(

n

m

)
−
(

n

m − 1

)
.

7 Conclusion

We have considered several directed path models of some polymer and vesicle pro-
blems. Each model was used to illustrate an important method of solving lattice path
enumeration problems. In particular, the Temperley method was used for the collapse
problem in the discrete case and the ZL method for the semi-continuous vesicle model.
The constant term method was used to solve a set of partial difference equations for
the polymer adsorption problem. The Kernel method was used to solve the functional
equation that arose in the polymer force problem. Finally, the Transfer Matrix method
was used to solve the problem of colloid dispersions.

Each of these methods are in fact very similar in that they each rely on writing
down equations for the partition function of various generating functions that occur
when an extra step is added to the lattice path (or column in the case of the collapse
and vesicle problems).
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